* * GPIO Button Hotplug driver * * Copyright (C) 2012 Felix Fietkau <nbd@openwrt.org> * Copyright (C) 2008-2010 Gabor Juhos <juhosg@openwrt.org> * * Based on the diag.c - GPIO interface driver for Broadcom boards * Copyright (C) 2006 Mike Baker <mbm@openwrt.org>, * Copyright (C) 2006-2007 Felix Fietkau <nbd@openwrt.org> * Copyright (C) 2008 Andy Boyett <agb@openwrt.org> * * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 as published * by the Free Software Foundation. */ #include <linux/module.h> #include <linux/version.h> #include <linux/kmod.h> #include <linux/workqueue.h> #include <linux/skbuff.h> #include <linux/netlink.h> #include <linux/kobject.h> #include <linux/input.h> #include <linux/interrupt.h> #include <linux/platform_device.h> #include <linux/of_gpio.h> #include <linux/gpio_keys.h> #define DRV_NAME "gpio-keys" #define BH_SKB_SIZE 2048 #define PFX DRV_NAME ": " //#undef BH_DEBUG #define BH_DEBUG #ifdef BH_DEBUG #define BH_DBG(fmt, args...) printk(KERN_DEBUG "%s: " fmt, DRV_NAME, ##args ) #else #define BH_DBG(fmt, args...) do {} while (0) #endif #define BH_ERR(fmt, args...) printk(KERN_ERR "%s: " fmt, DRV_NAME, ##args ) struct bh_priv { unsigned long seen; }; struct bh_event { const char *name; unsigned int type; char *action; unsigned long seen; struct sk_buff *skb; struct work_struct work; }; struct bh_map { unsigned int code; const char *name; }; struct gpio_keys_button_data { struct delayed_work work; struct bh_priv bh; int last_state; int count; int threshold; int can_sleep; struct gpio_keys_button *b; }; extern u64 uevent_next_seqnum(void); #define BH_MAP(_code, _name) \ { \ .code = (_code), \ .name = (_name), \ } static struct bh_map button_map[] = { BH_MAP(BTN_0, "BTN_0"), BH_MAP(BTN_1, "BTN_1"), BH_MAP(BTN_2, "BTN_2"), BH_MAP(BTN_3, "BTN_3"), BH_MAP(BTN_4, "BTN_4"), BH_MAP(BTN_5, "BTN_5"), BH_MAP(BTN_6, "BTN_6"), BH_MAP(BTN_7, "BTN_7"), BH_MAP(BTN_8, "BTN_8"), BH_MAP(BTN_9, "BTN_9"), BH_MAP(KEY_POWER, "power"), BH_MAP(KEY_RESTART, "reset"), BH_MAP(KEY_RFKILL, "rfkill"), BH_MAP(KEY_WPS_BUTTON, "wps"), BH_MAP(KEY_WIMAX, "wwan"), }; /* -------------------------------------------------------------------------*/ static int bh_event_add_var(struct bh_event *event, int argv, const char *format, ...) { static char buf[128]; char *s; va_list args; int len; if (argv) return 0; va_start(args, format); len = vsnprintf(buf, sizeof(buf), format, args); va_end(args); //vsnprintf 需要与va_start, va_end 组合使用, 将format中的内容移到buf中 // if (len >= sizeof(buf)) { BH_ERR("buffer size too small\n"); WARN_ON(1); return -ENOMEM; } s = skb_put(event->skb, len + 1); strcpy(s, buf); // struct sk_buff是linux网络系统中的核心结构体,linux网络中的所有数据包的封装以及解 // 封装都是在这个结构体的基础上进行 // skb_put, 向sk_buff套接字缓存区的数据区的尾部加入len长的数据, 返回缓存区数据的终止位 // 参考: http://weiguozhihui.blog.51cto.com/3060615/1586777 BH_DBG("added variable '%s'\n", s); return 0; } // 将 event 中的信息加入到sk_buff中 static int button_hotplug_fill_event(struct bh_event *event) { int ret; ret = bh_event_add_var(event, 0, "HOME=%s", "/"); if (ret) return ret; ret = bh_event_add_var(event, 0, "PATH=%s", "/sbin:/bin:/usr/sbin:/usr/bin"); if (ret) return ret; ret = bh_event_add_var(event, 0, "SUBSYSTEM=%s", "button"); if (ret) return ret; ret = bh_event_add_var(event, 0, "ACTION=%s", event->action); if (ret) return ret; ret = bh_event_add_var(event, 0, "BUTTON=%s", event->name); if (ret) return ret; if (event->type == EV_SW) { ret = bh_event_add_var(event, 0, "TYPE=%s", "switch"); if (ret) return ret; } ret = bh_event_add_var(event, 0, "SEEN=%ld", event->seen); if (ret) return ret; ret = bh_event_add_var(event, 0, "SEQNUM=%llu", uevent_next_seqnum()); return ret; } static void button_hotplug_work(struct work_struct *work) { struct bh_event *event = container_of(work, struct bh_event, work); int ret = 0; event->skb = alloc_skb(BH_SKB_SIZE, GFP_KERNEL); if (!event->skb) goto out_free_event; ret = bh_event_add_var(event, 0, "%s@", event->action); if (ret) goto out_free_skb; ret = button_hotplug_fill_event(event); BH_DBG("function '%s'\n", "button_hotplug_fill_event"); if (ret) goto out_free_skb; NETLINK_CB(event->skb).dst_group = 1; broadcast_uevent(event->skb, 0, 1, GFP_KERNEL); // //NETLINK_CB 在对缓冲区设置完成消息地址 // NETLINK_CB(skb).pid = 0; NETLINK_CB(skb).dst_pid = 0; // NETLINK_CB(skb).dst_group = 1; // 字段pid表示消息发送者进程ID,也即源地址,对于内核,它为 0, dst_pid 表示消息接收者进程 // ID,也即目标地址,如果目标为组或内核,它设置为 0,否则 dst_group 表示目标组地址, // 如果它目标为某//一进程或内核,dst_group 应当设置为 0。 // broadcast_uevent 原型: int broadcast_uevent(struct sk_buff *skb, __u32 pid, __u32 // group, gfp_t allocation); out_free_skb: if (ret) { BH_ERR("work error %d\n", ret); kfree_skb(event->skb); } out_free_event: kfree(event); } static int button_hotplug_create_event(const char *name, unsigned int type, unsigned long seen, int pressed) { struct bh_event *event; BH_DBG("create event, name=%s, seen=%lu, pressed=%d\n", name, seen, pressed); event = kzalloc(sizeof(*event), GFP_KERNEL); if (!event) return -ENOMEM; event->name = name; event->type = type; event->seen = seen; event->action = pressed ? "pressed" : "released"; INIT_WORK(&event->work, (void *)(void *)button_hotplug_work); //初始化工作队列,并与 button_hotplug_work 函数绑定 schedule_work(&event->work); // 调度工作队列 return 0; } /* -------------------------------------------------------------------------*/ static int button_get_index(unsigned int code) { int i; for (i = 0; i < ARRAY_SIZE(button_map); i++) if (button_map[i].code == code) return i; return -1; } static void button_hotplug_event(struct gpio_keys_button_data *data, unsigned int type, int value) { struct bh_priv *priv = &data->bh; unsigned long seen = jiffies; int btn; BH_DBG("event type=%u, code=%u, value=%d\n", type, data->b->code, value); if ((type != EV_KEY) && (type != EV_SW)) return; btn = button_get_index(data->b->code); if (btn < 0) return; button_hotplug_create_event(button_map[btn].name, type, (seen - priv->seen) / HZ, value); priv->seen = seen; } struct gpio_keys_button_dev { int polled; struct delayed_work work; struct device *dev; struct gpio_keys_platform_data *pdata; struct gpio_keys_button_data data[0]; }; static int gpio_button_get_value(struct gpio_keys_button_data *bdata) { int val; if (bdata->can_sleep) val = !!gpio_get_value_cansleep(bdata->b->gpio); else val = !!gpio_get_value(bdata->b->gpio); return val ^ bdata->b->active_low; } static void gpio_keys_polled_check_state(struct gpio_keys_button_data *bdata) { int state = gpio_button_get_value(bdata); if (state != bdata->last_state) { unsigned int type = bdata->b->type ?: EV_KEY; if (bdata->count < bdata->threshold) { bdata->count++; return; } if ((bdata->last_state != -1) || (type == EV_SW)) { BH_DBG("function '%s' 1 gpio_keys_polled_check_state \n", "button_hotplug_fill_event"); button_hotplug_event(bdata, type, state); } bdata->last_state = state; } bdata->count = 0; } static void gpio_keys_polled_queue_work(struct gpio_keys_button_dev *bdev) { struct gpio_keys_platform_data *pdata = bdev->pdata; unsigned long delay = msecs_to_jiffies(pdata->poll_interval); if (delay >= HZ) delay = round_jiffies_relative(delay); //返回精确到秒的jiffies 值 schedule_delayed_work(&bdev->work, delay); //工作队列开始,计时开始, 时间到了运行绑定 //的函数: gpio_keys_polled_poll() } static void gpio_keys_polled_poll(struct work_struct *work) { struct gpio_keys_button_dev *bdev = container_of(work, struct gpio_keys_button_dev, work.work); int i; for (i = 0; i < bdev->pdata->nbuttons; i++) { struct gpio_keys_button_data *bdata = &bdev->data[i]; gpio_keys_polled_check_state(bdata); } gpio_keys_polled_queue_work(bdev); } static void gpio_keys_polled_close(struct gpio_keys_button_dev *bdev) { struct gpio_keys_platform_data *pdata = bdev->pdata; cancel_delayed_work_sync(&bdev->work); if (pdata->disable) pdata->disable(bdev->dev); } static irqreturn_t button_handle_irq(int irq, void *_bdata) { struct gpio_keys_button_data *bdata = (struct gpio_keys_button_data *) _bdata; BH_DBG("function '%s' 1 button_handle_irq \n", "button_hotplug_fill_event"); button_hotplug_event(bdata, bdata->b->type ?: EV_KEY, gpio_button_get_value(bdata)); return IRQ_HANDLED; } #ifdef CONFIG_OF static struct gpio_keys_platform_data * gpio_keys_get_devtree_pdata(struct device *dev) { struct device_node *node, *pp; struct gpio_keys_platform_data *pdata; struct gpio_keys_button *button; int error; int nbuttons; int i = 0; node = dev->of_node; if (!node) return NULL; nbuttons = of_get_child_count(node); if (nbuttons == 0) return NULL; pdata = devm_kzalloc(dev, sizeof(*pdata) + nbuttons * (sizeof *button), GFP_KERNEL); if (!pdata) { error = -ENOMEM; goto err_out; } pdata->buttons = (struct gpio_keys_button *)(pdata + 1); pdata->nbuttons = nbuttons; pdata->rep = !!of_get_property(node, "autorepeat", NULL); of_property_read_u32(node, "poll-interval", &pdata->poll_interval); for_each_child_of_node(node, pp) { enum of_gpio_flags flags; if (!of_find_property(pp, "gpios", NULL)) { pdata->nbuttons--; dev_warn(dev, "Found button without gpios\n"); continue; } button = &pdata->buttons[i++]; button->gpio = of_get_gpio_flags(pp, 0, &flags); button->active_low = flags & OF_GPIO_ACTIVE_LOW; if (of_property_read_u32(pp, "linux,code", &button->code)) { dev_err(dev, "Button without keycode: 0x%x\n", button->gpio); error = -EINVAL; goto err_out; } button->desc = of_get_property(pp, "label", NULL); if (of_property_read_u32(pp, "linux,input-type", &button->type)) button->type = EV_KEY; button->wakeup = !!of_get_property(pp, "gpio-key,wakeup", NULL); if (of_property_read_u32(pp, "debounce-interval", &button->debounce_interval)) button->debounce_interval = 5; } if (pdata->nbuttons == 0) { error = -EINVAL; goto err_out; } return pdata; err_out: return ERR_PTR(error); } static struct of_device_id gpio_keys_of_match[] = { { .compatible = "gpio-keys", }, { }, }; MODULE_DEVICE_TABLE(of, gpio_keys_of_match); static struct of_device_id gpio_keys_polled_of_match[] = { { .compatible = "gpio-keys-polled", }, { }, }; MODULE_DEVICE_TABLE(of, gpio_keys_polled_of_match); #else static inline struct gpio_keys_platform_data * gpio_keys_get_devtree_pdata(struct device *dev) { return NULL; } #endif static int gpio_keys_button_probe(struct platform_device *pdev, struct gpio_keys_button_dev **_bdev, int polled) { struct gpio_keys_platform_data *pdata = pdev->dev.platform_data; struct device *dev = &pdev->dev; struct gpio_keys_button_dev *bdev; struct gpio_keys_button *buttons; int error; int i; if (!pdata) { pdata = gpio_keys_get_devtree_pdata(dev); if (IS_ERR(pdata)) return PTR_ERR(pdata); if (!pdata) { dev_err(dev, "missing platform data\n"); return -EINVAL; } BH_DBG("pdata is NULL '%s'\n", "pdata"); pdev->dev.platform_data = pdata; } BH_DBG("pdata is have address '%s'\n", "pdata"); if (polled && !pdata->poll_interval) { dev_err(dev, "missing poll_interval value\n"); return -EINVAL; } buttons = devm_kzalloc(dev, pdata->nbuttons * sizeof(struct gpio_keys_button), GFP_KERNEL); if (!buttons) { dev_err(dev, "no memory for button data\n"); return -ENOMEM; } memcpy(buttons, pdata->buttons, pdata->nbuttons * sizeof(struct gpio_keys_button)); bdev = devm_kzalloc(dev, sizeof(struct gpio_keys_button_dev) + pdata->nbuttons * sizeof(struct gpio_keys_button_data), GFP_KERNEL); if (!bdev) { dev_err(dev, "no memory for private data\n"); return -ENOMEM; } bdev->polled = polled; for (i = 0; i < pdata->nbuttons; i++) { struct gpio_keys_button *button = &buttons[i]; struct gpio_keys_button_data *bdata = &bdev->data[i]; unsigned int gpio = button->gpio; if (button->wakeup) { dev_err(dev, DRV_NAME "does not support wakeup\n"); return -EINVAL; } error = devm_gpio_request(dev, gpio, button->desc ? button->desc : DRV_NAME); if (error) { dev_err(dev, "unable to claim gpio %u, err=%d\n", gpio, error); return error; } error = gpio_direction_input(gpio); if (error) { dev_err(dev, "unable to set direction on gpio %u, err=%d\n", gpio, error); return error; } bdata->can_sleep = gpio_cansleep(gpio); bdata->last_state = -1; if (bdev->polled) bdata->threshold = DIV_ROUND_UP(button->debounce_interval, pdata->poll_interval); else bdata->threshold = 1; bdata->b = &pdata->buttons[i]; } bdev->dev = &pdev->dev; bdev->pdata = pdata; platform_set_drvdata(pdev, bdev); *_bdev = bdev; return 0; } static int gpio_keys_probe(struct platform_device *pdev) { struct gpio_keys_platform_data *pdata; struct gpio_keys_button_dev *bdev; int ret, i; ret = gpio_keys_button_probe(pdev, &bdev, 0); if (ret) return ret; pdata = pdev->dev.platform_data; for (i = 0; i < pdata->nbuttons; i++) { struct gpio_keys_button *button = &pdata->buttons[i]; struct gpio_keys_button_data *bdata = &bdev->data[i]; if (bdata->can_sleep) { dev_err(&pdev->dev, "skipping gpio:%d, it can sleep\n", button->gpio); continue; } if (!button->irq) button->irq = gpio_to_irq(button->gpio); if (button->irq < 0) { dev_err(&pdev->dev, "failed to get irq for gpio:%d\n", button->gpio); continue; } ret = devm_request_irq(&pdev->dev, button->irq, button_handle_irq, IRQF_TRIGGER_RISING | IRQF_TRIGGER_FALLING, dev_name(&pdev->dev), bdata); if (ret) dev_err(&pdev->dev, "failed to request irq:%d for gpio:%d\n", button->irq, button->gpio); else dev_dbg(&pdev->dev, "gpio:%d has irq:%d\n", button->gpio, button->irq); if (bdata->b->type == EV_SW) { BH_DBG("function '%s' 2 bdata->b->type == EV_SW \n", "button_hotplug_fill_event"); button_hotplug_event(bdata, EV_SW, gpio_button_get_value(bdata)); } } return 0; } static int gpio_keys_polled_probe(struct platform_device *pdev) { struct gpio_keys_platform_data *pdata; struct gpio_keys_button_dev *bdev; int ret; int i; ret = gpio_keys_button_probe(pdev, &bdev, 1); if (ret) return ret; INIT_DELAYED_WORK(&bdev->work, gpio_keys_polled_poll); pdata = bdev->pdata; if (pdata->enable) pdata->enable(bdev->dev); for (i = 0; i < pdata->nbuttons; i++) gpio_keys_polled_check_state(&bdev->data[i]); gpio_keys_polled_queue_work(bdev); return ret; } static int gpio_keys_remove(struct platform_device *pdev) { struct gpio_keys_button_dev *bdev = platform_get_drvdata(pdev); platform_set_drvdata(pdev, NULL); if (bdev->polled) gpio_keys_polled_close(bdev); return 0; } static struct platform_driver gpio_keys_driver = { .probe = gpio_keys_probe, .remove = gpio_keys_remove, .driver = { .name = "gpio-key", .owner = THIS_MODULE, .of_match_table = of_match_ptr(gpio_keys_of_match), }, }; static struct platform_driver gpio_keys_polled_driver = { .probe = gpio_keys_polled_probe, .remove = gpio_keys_remove, .driver = { .name = "gpio-keys-polled", .owner = THIS_MODULE, .of_match_table = of_match_ptr(gpio_keys_polled_of_match), }, }; static int __init gpio_button_init(void) { int ret; ret = platform_driver_register(&gpio_keys_driver); if (ret) return ret; ret = platform_driver_register(&gpio_keys_polled_driver); if (ret) platform_driver_unregister(&gpio_keys_driver); return ret; } static void __exit gpio_button_exit(void) { platform_driver_unregister(&gpio_keys_driver); platform_driver_unregister(&gpio_keys_polled_driver); } module_init(gpio_button_init); module_exit(gpio_button_exit); MODULE_AUTHOR("Gabor Juhos <juhosg@openwrt.org>"); MODULE_AUTHOR("Felix Fietkau <nbd@openwrt.org>"); MODULE_DESCRIPTION("Polled GPIO Buttons hotplug driver"); MODULE_LICENSE("GPL v2"); MODULE_ALIAS("platform:" DRV_NAME);
函数调用过程:gpio_keys_polled_probe–> INIT_DELAYED_WORK(&bdev->work, gpio_keys_polled_poll); gpio_keys_polled_poll –> gpio_keys_polled_check_state –> gpio_keys_polled_check_state –> button_hotplug_event–> button_hotplug_create_event–>INIT_WORK(&event->work, (void )(void )button_hotplug_work) –>bh_event_add_var–>button_hotplug_fill_event–> broadcast_uevent(event->skb, 0, 1, GFP_KERNEL)
当在mach文件或dts 文件中用的是 “gpio-keys-polled ” 驱动, 时 首先调用 gpio_keys_button_probe(pdev, &bdev, 1) 配置的 gpio-button 是否合法及存在,若存在则调用 INIT_DELAYED_WORK(&bdev->work, gpio_keys_polled_poll); 将&bdev->work与gpio_keys_polled_poll() 函数绑定, (INIT_DELAYED_WORK中第一个work 的结构是 delayed_work 类型, NIT_DELAYED_WORK中第一个work 的结构是 work_struct 类型), 并初始化。gpio_keys_polled_check_state() 函数是对注册的函数类型进行检查, 最后gpio_keys_polled_queue_work() 运行队列。
gpio_keys_polled_poll() 工作函数中包含gpio_keys_polled_queue_work()函数, 所以gpio_keys_polled_poll() 会定时的周期运行。
此驱动就是周期性的运行gpio_keys_polled_poll()函数对每一个注册的button 进行扫描